Tag: LINAC parts

3 Tips For Installing or Replacing a Linear Accelerator

New linear accelerators can cost a medical facility between 1 and 5 million dollars.  The expense of owning a LINAC does not stop once it has ben purchased.  There are items outside of the actual equipment purchase such as a simulator, training computers, treatment rooms, salaries, ongoing training, operation expenses, maintenance, repairs, and more.  The total cost of large scaled medical equipment is never one that should be underestimated.  Whether you are installing a brand new or refurbished linear accelerator, installing a LINAC for the first time, or replacing an existing one there are three tips the professionals at Acceletronics want to give you.

Step One – Plan, Plan, and Plan Some More

The installation planning process for a linear accelerator takes between six months to eight years.  The length of time for planning your project can span almost any length of time.

  • When planning new technology, you will first want to establish the technology that you need in order to treat patients.  What types of cases will you be treating?  Consider the options IMRT, IGRT, and so on.
  • If you are installing a linear accelerator in new construction, you will want to consider the constraints that come along with that.  What local permits do you need, do you have the proper power supply needed for this large scaled equipment, are there constraints that will limit your installation?  If you are renovating a space consider the rooms constraints, size, location of isocenter and so forth.
  • Create a timeline for major milestones.  When will the vault be completed, when are vendors scheduled to install computers?  When planning these things consider potential areas where conflict can occur and come up with a backup plan.
  • Once the goals are established, a budget is needed to acquire the new equipment.  Consider other aspects as well such as training, equipment needed to run the LINAC and treat patients, and the extra items that can be forgotten about when focusing on the large scaled purchase.

Step Two – Hire Based on Experience

When hiring a team of professionals, it is crucial that you hire experts.  Experts are needed for designing the vault, construction, providers of equipment and supplies, IT support, clinical implementation teams, and such.  Don’t trade cost for quality.  Sometimes a little bit more money now can save you a great deal of money later on down the road.  Ask for references when working with different vendors.  Hire only those vendors that understand the collaboration effort needed to install medical equipment such as CT Scanners and Linear Accelerators. 

Step Three – Commit to Quality

When buying a used or refurbished linear accelerator there is a three-step process that you should follow to ensure you get a machine that meets your needs and beyond.  These steps include: a review of the LINAC’s service history (look at major service events such as waveguide replacement), review the machine’s utilization and beam hours, and perform a physical inspection of the machine. 

As an independent LINAC service company, Acceletronics is dedicated to delivering the best equipment performance and services for linear accelerators and CT scanners across all major brands and models, as well as new and refurbished LINAC systems for sale.  More information can be found online at https://www.acceletronics.com/.

Treating Medical Conditions With Radiation Treatment

Radiation therapy is just one treatment used in the treatment of cancer.  Linear accelerators, LINAC, are often used to deliver radiation which destroys cancerous cells.  LINAC machines use high energy x-rays to deliver radiation to cancerous tumors.  This breaks down and destroys the cancer cells while trying to minimize the damage and exposure to the surrounding healthy cells.  Radiation therapy is used to shrink and destroy cancer to prevent it from spreading. 

Radiation treatment can vary a great deal depending on the type of cancer and where it is located.  Linear accelerators are just one type of machine used to administer radiation.  When a patient is diagnosed with cancer, your oncologist will work with a team of experts to determine what type of treatment is best for you depending on your cancer, its location, overall health, and medical history. 

Keep in mind when a cancer treatment plan is being created that it may involve more than one type of treatment including radiation therapy, surgery, and/or drug therapy.  The best-known type of drug therapy is chemotherapy.  This is a medication that moves through the bloodstream in order to attack cancer in the body. 

Your team of doctors, including your oncologist will prescribe a treatment plan for your unique cancer.  Often this includes a combination of treatments.  When a combination of treatments is prescribed to treat cancer, it is important to follow the order that your doctor specifies as there often is a specific order that treatment needs to be given in order to treat specific conditions. 

Cancer is not the only medical condition that is treated using radiation therapy.  Below we will highlight different diseases that respond well with radiation therapy.

  • Acoustic Neuroma

This is a tumor that is not cancerous.  It is produced when the body over produces Schwann cells.  When this occur the abundance of cells presses on the nerves that control hearing and balance within the inner ear. 

  • Arteriovenous Malformations

This occurs when a connection between the arteries and veins in the brain and spine are atypical.  When this happens there will be neurologic symptoms and bleeding. 

  • Bone Cancer

Bone cancer is a growth of abnormal cells in a bone.  These cells can either be cancerous or benign.

  • Brain Tumor

Like bone cancer a brain tumor may be either cancerous or non-cancerous.  A brain tumor occurs when there is an irregular development of tissue in the brain. 

  • Chondrosarcoma

This is a type of bone cancer that is malignant.  It most often is seen in the cartilage cells of the femur, arm, knee, pelvis, or spine.  Other areas that may be affected, but less often are areas like the ribs. 

  • Chordoma

Chordoma is very rare.  It grows slower than most cancerous tumors that occur along the spine from the bottom of the skull all the way down to the tailbone.

  • Ewing’s Sarcoma

This is a type of cancer that occur in soft tissue and bone.  It is often located in extremities and can involve muscles and soft tissue close to the site of a tumor.  It is also a cancer that spreads to areas throughout the body. 

  • Leukemia

Leukemia is a type of blood cancer that develops in bone marrow.  This type of cancer produces three major blood cells including platelets, white and red blood cells.

  • Meningioma

One type of tumor that cultivates from meninges, the protective membranes surrounding the brain and spinal cord is Meningioma.  This is often a benign and slow-growing tumor.

  • Osteosarcoma

Most often occurring in children and young adults, this is a type of bone cancer that cultivates in the osteoblast cells which form the outer covering of bones.

  • Soft Tissue Sarcomas

This rare cancer is just one of many soft tissue sarcomas.  Soft tissue sarcomas, overall, are rare.

  • Trigeminal Neuralgia

This is a disorder in the nerves which causes pain in parts of the face that feel like a stabbing or electrical shock like pain.

There are two main types of radiation therapy that are used in treatment including external and internal radiation.  External radiation is delivered using a LINAC.  This is a machine that gives treatment outside of the body by moving around it without touching the patient.  External radiation using a linear accelerator causes patients no pain and cannot be felt during treatment. Internal radiation, brachytherapy, is radiation therapy that is used to treat certain gynecological and prostate cancers.

Information on linear accelerators, new and refurbished or parts for maintenance and repair can be found at https://www.acceletronics.com/ and https://radparts.com/.

Are Beam Hours Important When Purchasing A Used LINAC?

Buying used and refurbished linear accelerators can save medical facilities a great deal of money.  This is fairly critical when it comes to the limited budgets that growing healthcare centers face.  The question most often asked is about the HV (high voltage) hours, beam hours, and how important their role is in determining the wear and tear of a LINAC. 

Buying used and refurbished linear accelerators can save medical facilities a great deal of money.  This is fairly critical when it comes to the limited budgets that growing healthcare centers face.  The question most often asked is about the HV (high voltage) hours, beam hours, and how important their role is in determining the wear and tear of a LINAC

The most universal analogy comes down to the mileage of a used vehicle, the more miles usually means more wear and tear.  The higher the mileage, the less you should expect the resale value to be.  Beam hours are very similar.  Beam hours are equivalent to the time that the beam has been in use.  Thus, higher HV hours often means that these machines will be priced lower than LINACS with lower beam hours.  This of course assumes all other things are equal.

In reality a dozen factors go into determining the price facilities will pay when purchasing a used linear accelerator.  These include factors such as manufacturer, age of LINAC, updates to software/technology, and upgrades to the machine.  The chart below offers a reasonable explanation to what facilities should expect in regard to beam hours.

Expected Time Until Machine Replacement/Major Refurbishment
5 years 10 years 15 years
Patients Seen Per Day 10+ 2000 Beam Hours 1500 Beam Hours 1000 Beam Hours
<10 3000 Beam Hours 2500 Beam Hours 2000 Beam Hours

On the top you will see a number that reflects the years a used machine is expected to be in place at the new facility.  When a facility is getting started, doesn’t expect to see a lot of patients, and expects to have a higher revenue to purchase equipment in the next couple of years a used LINAC with higher beam hours is acceptable to be purchased.   However, if this same facility hopes to hold onto the machine for an extended period of time or expects to see a high number of patients, they should re-evaluate the number of acceptable beam hours that can be on a used LINAC. 

Situation: A health care center looking into adding a cancer treatment center to an already booming facility.  They are expecting that as they make available this new treatment option that their revenue will increase.  They also expect that as patients become aware of the option for treatment the number of patients, they can expect to see should be higher than they are to begin with.  They want to purchase a LINAC without having to replace it for about 10 years.  What amount of beam hours should they be looking for on a used LINAC? 

This facility, because they are assuming, they will see a high number of patients for treatment as the word spreads that they are offering LINAC treatment should assume that in time they will be seeing more than 10 patients a day.  Even if they start out slow at 5 patients a day now, it is assumed that they will be treating upwards of 15 or more eventually which will average out.  Because they want the equipment to last at least 10 years this facility should only be looking at LINAC systems with between 1000-1500 used beam hours anything with more than that will not serve the purpose for the volume of patients they are expecting or the years that they wish to use this piece of medical equipment.

Another thing a facility needs to consider is how often IMRT and VMAT treatment will be used.  These two types of treatment options consumer more beam hours.   This should be considered when looking into a used LINAC.   

This illustration should be used only as a guideline.   With proper, regular maintenance, servicing, and parts replacement, used/pre-owned linear accelerators can last for years even with a high number of beam hours. 

As an independent LINAC service company, Acceletronics is dedicated to delivering the best equipment performance and services for linear accelerators and CT scanners across all major brands and models, as well as new and refurbished LINAC systems for sale.  More information can be found online at https://www.acceletronics.com/.

Another thing a facility needs to consider is how often IMRT and VMAT treatment will be used.  These two types of treatment options consumer more beam hours.   This should be considered when looking into a used LINAC.   

This illustration should be used only as a guideline.   With proper, regular maintenance, servicing, and parts replacement, used/pre-owned linear accelerators can last for years even with a high number of beam hours. 

As an independent LINAC service company, Acceletronics is dedicated to delivering the best equipment performance and services for linear accelerators and CT scanners across all major brands and models, as well as new and refurbished LINAC systems for sale.  More information can be found online at https://www.acceletronics.com/.

Fighting Cancer With External Radiotherapy

There are several questions that come along with a cancer diagnosis. One of the first questions that patients ask is regarding the treatment of their newly diagnosed cancer.  Patients want to know how they are going to rid their body of cancer.  The answer most often, external radiotherapy.

External radiation, radiotherapy is treatment of cancer using a machine known as a linear accelerator to directly aim radiation beams to the cancerous tumors from outside the body.  These beams are meant to shrink and/or destroy the cancerous tumor without harming the healthy tissue surrounding it.  This is different from internal radiotherapy where radiation is delivered to the cancerous tumor within the body.

Radiotherapy works through a process of damaging the DNA that exists within the cancer cells.  A patient’s personal DNA, which is genetic, is the code that controls how a patient’s body will behave during treatment.

Before a patient starts treatment their team of experts will create a plan and introduce it to the patient.  It will include several elements including the short and long terms side effects of radiation.  Most side effects are short terms and will disappear with medication and time. 

Radiation therapy begins with a wide range of tests.  These often include:

  • X-Rays
  • CT Scans
  • MRI’s
  • PET Scans

These scans and images will allow experts to develop a treatment plan that allows the highest dose of radiation to the cancer while trying to reduce the effects to the healthy tissues surrounding it.

When you are set to receive external radiotherapy you will have treatment in a radiotherapy department.  Radiotherapy machines are large and can vary.  The most common machine in delivering radiation is known as a linear accelerator, LINAC.  A linear accelerator uses an electricity to create the beams of radiation.  Patients will not feel the radiation that a LINAC gives off. There are possible side effects however these are rare. 

Radiation therapy works because it can treat the cancerous cells and the bordering healthy tissues without harm.  A high dose of therapy is given directly to the cancer and lower dose to the surrounding tissues.

Radiation is delivered in individual fractions that are smaller than the full dose.  This ensures that the healthy cells surrounding the cancer to recover between treatments.  Patients will have what is known as a series of smaller dose treatments which is known as radiotherapy fractions.

Radiotherapy is intended to relieve the symptoms of cancer including pain.  This is known as a type of palliative radiotherapy, fewer fractions and sometimes just one.  The radiotherapy dose with each radiotherapy fraction is larger but there are fewer fractions.  Overall the radiotherapy dose is lower.  Palliative treatment has a decrease in side effects and is used as a cure for cancer. 

As an independent LINAC service company, Acceletronics is dedicated to delivering the best equipment performance and services for linear accelerators and CT scanners across all major brands and models, as well as new and refurbished LINAC systems for sale.  More information can be found online at https://www.acceletronics.com/.

Radiation Therapy 101


There is a lot of information on radiation therapy online.  The process of delivering radiation isn’t exactly the same between facilities however it’s similar.  In this installment we will look into radiation therapy generically to provide a general overview. 

Methods For Treatment

There are a number of ways to treat cancer with radiation; the method used depends on the nature and position of your cancer.  The most prevalent method of radiation is known as external beam therapy.  This is often done using a linear accelerator from the outside of the body directing radiation to the tumor. 

Radiation therapy is known to affect both cancerous and normal cells.  Radiation has a greater effect on cancerous cells.  Treatment is given at the highest dose possible, within a safe limit, to kill cancerous cells without causing damage to normal, healthy cells.  If the goal is to reduce the size of the tumor in order to relieve symptoms or to shrink the tumor for surgery, low dosages are often used.

Radiation Professionals

Radiation therapy is planned out by a specialist cancer doctor known as a radiation oncologist.  Then radiation is delivered by a radiation therapist.  A team of specialists including nurses, health care assistants, counselors, and dieticians will work together to ensure the best possible outcome for your treatment. 

There are many benefits included in how radiation treatment is planned.  Each patient has a unique treatment plan that is designed to meet each patient’s particular need.  During the initial visit a course of treatment will be planned.  This is done using simulators, x-rays, and scans to pinpoint the tumor.  The skin will be marked to define the treatment area. 

Life With Treatments

Most individuals receiving radiation therapy will not need to stay overnight in a hospital after receiving radiation.  Therapy is done on an outpatient need unless your radiation oncologist determines that treatment would be more effective if done while admitted.

Patients are allowed to continue life as normal during their radiation treatment.  It should not cause too much interruption to your day, in fact it should be looked at as another daily routine activity.  Radiation is given using a linear accelerator which works by delivering radiation from the outside through your skin.  Patients receiving treatment lay on a treatment couch and are asked to remain completely still.

Radiation oncologists will determine the length of treatment needed when first evaluating your situation.  The course of treatment can last anywhere from a week to six and can be performed on a weekly or daily basis.  This will depend on a number of factors including the area that is being treated, the aim of the treatment, and more. Each session of radiation varies depending on the machine used.  Most sessions last between five and fifteen minutes.

As an independent LINAC service company, Acceletronics is dedicated to delivering the best equipment performance and services for linear accelerators and CT scanners across all major brands and models, as well as new and refurbished LINAC systems for sale.  More information can be found online at https://www.acceletronics.com/.



A Sampling of Different LINAC Components and What They Do


A drive stand is a large part of a linear accelerator.  It is a cabinet in the shape of a rectangle that is attached to the floor within the treatment room.  The horizontal axis bearings that the gantry rotates on are positioned within the drive stand.

Components Within the Drive Stand

  • Klystron or Magnetron
  • RF Waveguide
  • Circulator
  • Cooling Water System

Klystron:

A Klystron is responsible for the microwave power that is used to accelerator the electrons.  This process occurs through intensification of present RF (Radio Frequency) electromagnetic waves.  The basic description of the operation of a Klystron is that it is a RF amplifier. A Klystron is often chosen for LINAC needing larger amounts of electron energy.

Magnetron:

A magnetron can be used in place of a Klystron.  A Magnetron is an electron tube that is responsible for providing the microwave power to accelerator electrons. A Magnetron is often chosen for LINAC needing smaller amounts of electron energy such as 4 MeV to 6 MeV LINAC.

RF Waveguide:

The structure in which the microwave powered RF electromagnetic waves are accelerated from the Klystron or Magnetron.

Circulator:

The circulator connects the Klystron or Magnetron to the RF Waveguide.

Cooling Water System:

A cooling system is in place to prevent overheating.  It creates a stable temperature environment within the Drive Stand and Gantry.

A gantry rotates three hundred and sixty degrees around a single point.  It works by directing the radiation beam from the LINAC to the tumor without moving the patient. 

Components Within the Gantry

  • Electron Gun
  • Accelerator Structure
  • Treatment Head

Treatment Head:

The treatment head of a linear accelerator encompass the components that shape and monitor the radiation beam.  These components include bending magnet, collimator, ion chambers, tray slots, wedges, blocks, and compensators.

Modulator Cabinet:

The modulator cabinet is the loudest components of a linear accelerator.  This component is located within the radiation treatment room.  The modulator cabinet includes a fan control, auxiliary power distribution system, and a primary power distribution system.  The fan control is used to cool off the power distribution systems.  The power distribution systems include the emergency off button to shut down the power to the LINAC.

Bending Magnet:

A bending magnet is a component of a LINAC that changes the direction of the beam down towards the patient.  It bends the beam towards the target and produces different paths for the beam for different energy needs. 

As an independent LINAC service company, Acceletronics is dedicated to delivering the best equipment performance and services for linear accelerators and CT scanners across all major brands and models, as well as new and refurbished LINAC systems for sale.  More information can be found online at https://www.acceletronics.com/.



How Does A Linear Accelerator Improve Radiation Therapy?

With todays technology treating cancer through radiation therapy is completely customized to each specific patient’s need.  Linear accelerators deliver cutting-edge radiation therapy; providing one of the most advanced cancer treatment techniques available.  Linear accelerators are able to deliver targeted radiation beams directly onto a patient’s cancerous growths with minimal damage to the healthy surrounding tissue. 

Oncologists often recommend radiation therapy using linear accelerator technology to treat new cancer diagnosis as it often improves the chance of a good outcome. Below are a number of the benefits that cancer patients find that LINAC offer in cancer treatment.

Personalized Care

Using detailed imagery linear accelerators pinpoint cancerous tumors with amazing precision.  This technique is known as image-guided radiation therapy.  Treatment with LINAC allows for radiologists to compensate for the shrinkage of the tumor and its movement.   Radiation therapists will treat tumors individually before each treatment session to account for the varying size and shape of the tumor and its changing position in the body.  This allows them to directly deliver radiation to the cancerous cells to shrink and destroy them.  Technicians can target cancer more accurately which decreases the risk to healthy tissue. 

Treatment to Any Part of The Body

Cancer can grow in any part of your body.  Thankfully, linear accelerators are able to treat them wherever they are.  Radiation therapy, using linear accelerators allows for the targeting of cancerous growths no matter where they are including: prostate, uterus, cervix, and/or prostate.

Higher Cure Rates

With the advanced technology in treating cancer that linear accelerators offer, specialists are able to monitor and adjust for shrinking tumors on a daily basis.  This means that each treatment is aimed more directly at the cancerous tumor which increases the effectiveness of the treatment and encourages a higher cure rate. 

Increased Comfort in Treatment

Treating cancer can seem incredible scary.  Treatment sessions can be long and uncomfortable but thankfully treating cancer with linear accelerators makes radiation sessions faster and more comfortable.  LINAC treatment sessions which may have lasted 10 to 30 minutes can now be completed in less than two minutes.  Quicker treatments make more patients less anxious and more comfortable.  

It is easy to see how LINAC improve the treatment of cancer.  Linear accelerators make cancer treatment faster, increase cure rates, and can be customized to each individual’s patients needs.  Radiation therapist plans develop personalized treatment plans that include education and support.

As an independent LINAC service company, Acceletronics is dedicated to delivering the best equipment performance and services for linear accelerators and CT scanners across all major brands and models, as well as new and refurbished LINAC systems for sale.  More information can be found online at https://www.acceletronics.com/.

Radiation Therapy: Two Common Photon Treatments

There are several common types of radiation therapy that are used in treating cancer today.  Radiation therapy is classified according to the type of radiation particles or waves that are used in treatment which include: photons, electrons, or protons.  The most commonly available treatments using photons and electrons.  In this installment we will look further into treatments using linear accelerators, LINAC, and CT Scanners, in the treatment of cancerous tumors.

3D Conformal Radiation Therapy

3D conformal radiation therapy is a method of treating cancer that uses CT imaging, Cat scan-based, in the treatment of cancerous tumors.  In 3D conformal radiation therapy, the tumors and organs are well-defined 3D images as opposed to flat images that are gotten from x-rays.  Tumors are outlined in three dimensions on a CT scan. Healthy organs are defined as well when scans are performed so that technicians can see areas that need to be avoided. 

Radiation beams are then organized in the best possible way to avoid healthy organs while delivering the highest dose of radiation possible to the cancerous tumor.  Patients are placed in the same position as they were when their CT scan was performed.  This allows for accurate placement of beams according to the scans that were obtained. 

Special software is used that calculates the total amount of radiation that will be delivered to the tumor and normal tissues to assure that the tumor is sufficiently covered in radiation while healthy tissues and organs receive as little radiation as possible.   The radiation beams are adjusted even further based on the software’s calculations to give healthy doses of radiation while being manipulated into varying positions and shapes as defined by the tumor.  Radiation beams are directed using one of two types of machines: Cerrobend blocks or multi-leaf collimators. 

Cerrobend blocks are individually shaped to form specific, custom-made shapes that create the correct beam for treatment.

Multi-leaf collimators are skinny, metal blocks that move independent of one another in a quick, swift manner to form complex patterns to shape radiation treatment beams.  They are commonly used in IMRT.

Intensity Modulated Radiation Therapy (IMRT)

IMRT is another form of delivering photons in the treatment of cancerous tumors with the possibility of lowering the dose of radiation delivered to non-cancerous tissues.  Planning for IMRT begins in a similar fashion as 3D conformal radiation therapy in that it starts out with simulation.  The tumor and organs are all outlined and shown as three-dimensional objects. Several beams of radiation are situated at varying points around the person in order to deliver the optimal amount of radiation. In IMRT, the beams are divided into a grid pattern.  The large radiation beam is split into numerous smaller beams known as beamlets. 

Software is used to establish the appropriate pattern to break the beamlets down into from the larger beam to prevent radiation targeting healthy tissues while delivering the optimum radiation to the cancer.  The multi-leaf collimators often form more than fifty different shapes during radiation treatment.  The main advantage to this type of radiation therapy is that the patterns the beamlets form are precise and the radiation controlled.  IMRT is often utilized when cancerous tumors are in positions that are difficult to treat. 

Often tumors that are directly adjacent to or wrapped around normal healthy organs, IMRT is used.  Intensity modulated radiation therapy reshapes the radiation in the best possible way to avoid normal organs while delivering large doses of radiation to the tumor.  IMRT is used commonly in the treatment of head and neck tumors where there are many other significant structures and organs that are near the tumor such as the spinal cord.

The one downside to IMRT is that it can take longer to plan and deliver treatment than other 3D conformal therapy.  Radiation can also be a bit more uneven as well because of the small beamlets that are being used.  Although normal organs are out of danger of high doses of radiation larger number of normal organs receive low doses of radiation which can be a disadvantage.  As of today, low doses of exposure to radiation are unknown.  Tumors must continually be monitored for movement and shrinkage to ensure that radiation is being delivered to the cancer. 

As an independent LINAC service company, Acceletronics is dedicated to delivering the best equipment performance and services for linear accelerators and CT scanners across all major brands and models, as well as new and refurbished LINAC systems for sale.  More information can be found online at https://www.acceletronics.com/.

Brachytherapy: Answering Questions You May Have About Brachytherapy

Brachytherapy is a type of radiation therapy.  Unlike other types where an external radiation machine known as a linear accelerator is used brachytherapy uses radiation that is implanted close to the cancerous cells. In brachytherapy radiation is implanted within your body as close to the cancerous cells as possible.  A higher dose of radiation therapy can be given in a shorter amount of time than with types of external radiation therapy.

Brachytherapy is not delivered through external radiation therapy but instead the radioactive materials are delivered using a hollow tube(catheter).  The radioactive materials are implanted directly onto the cancerous tumor.  The implants that are used can be either temporary or permanent. This form of radiation therapy allows treatment to be delivered to the cancer cells without damaging the normal tissues close to the cancer. 

Doctors use brachytherapy when they have decided that your best treatment option is a higher dose of radiation delivered directly to the cancer.  External radiation offers lower doses of radiation than brachytherapy can. Higher doses of radiation are often needed for cancers such as: brain,breast, cervical, ovarian, head, neck, and lung. 

How does implantation work?

Implantation of the radiation can be delivered in two ways:through an outpatient procedure or another which requires general or local anesthesia and a stay at the hospital.   

How much time is needed for brachytherapy?

 The time needed to perform brachytherapy depends on whether it is being done on an inpatient or outpatient basis, the type of radiation therapy to be used, and the nature of your cancer.  Internal radiation therapy can be done through the course of three to five treatments when done on an outpatient basis for a few minutes over a number of days while other types of internal radiation therapy is left in place for up to a week and requires a hospital stay during this period of time.

Should side effects be expected?

Although you will most likely avoid side effects during treatment you may feel some discomfort. Having a catheter put in place can cause tenderness.  If you are given anesthesia when the catheter is implanted you can feel nauseous, weak, and drowsy.  Medicine can be prescribed that allow you to relax while relieving your pain.  If you experience any burning, excess sweating, or any other symptoms that seem unusual to your physician.

What happens when the actual implant is removed?

After the implant is removed the surrounding area can become sensitive for a bit although regular activity can be resumed when you feel ready.  As with any procedure it is important to allow your body to rest, so you can fully recover after treatment.

If you have a permanent implant installed rest assured, it will safely stay in place.  Once the radiation is completely gone the capsule in which it is contained will become inactive and no longer providing radiation.

As an independent LINAC service company, Acceletronics is dedicated to delivering the best equipment performance and services for linear accelerators and CT scanners across all major brands and models, as well as new and refurbished LINAC systems for sale. More information can be found online at https://www.acceletronics.com/.

Brachytherapy is a type of radiation therapy.  Unlike other types where an external radiation machine known as a linear accelerator is used brachytherapy uses radiation that is implanted close to the cancerous cells. In brachytherapy radiation is implanted within your body as close to the cancerous cells as possible.  A higher dose of radiation therapy can be given in a shorter amount of time than with types of external radiation therapy.

Brachytherapy is not delivered through external radiation therapy but instead the radioactive materials are delivered using a hollow tube(catheter).  The radioactive materials are implanted directly onto the cancerous tumor.  The implants that are used can be either temporary or permanent. This form of radiation therapy allows treatment to be delivered to the cancer cells without damaging the normal tissues close to the cancer. 

Doctors use brachytherapy when they have decided that your best treatment option is a higher dose of radiation delivered directly to the cancer.  External radiation offers lower doses of radiation than brachytherapy can. Higher doses of radiation are often needed for cancers such as: brain,breast, cervical, ovarian, head, neck, and lung. 

How does implantation work?

Implantation of the radiation can be delivered in two ways:through an outpatient procedure or another which requires general or local anesthesia and a stay at the hospital.   

How much time is needed for brachytherapy?

 The time needed to perform brachytherapy depends on whether it is being done on an inpatient or outpatient basis, the type of radiation therapy to be used, and the nature of your cancer.  Internal radiation therapy can be done through the course of three to five treatments when done on an outpatient basis for a few minutes over a number of days while other types of internal radiation therapy is left in place for up to a week and requires a hospital stay during this period of time.

Should side effects be expected?

Although you will most likely avoid side effects during treatment you may feel some discomfort. Having a catheter put in place can cause tenderness.  If you are given anesthesia when the catheter is implanted you can feel nauseous, weak, and drowsy.  Medicine can be prescribed that allow you to relax while relieving your pain.  If you experience any burning, excess sweating, or any other symptoms that seem unusual to your physician.

What happens when the actual implant is removed?

After the implant is removed the surrounding area can become sensitive for a bit although regular activity can be resumed when you feel ready.  As with any procedure it is important to allow your body to rest, so you can fully recover after treatment.

If you have a permanent implant installed rest assured, it will safely stay in place.  Once the radiation is completely gone the capsule in which it is contained will become inactive and no longer providing radiation.

As an independent LINAC service company, Acceletronics is dedicated to delivering the best equipment performance and services for linear accelerators and CT scanners across all major brands and models, as well as new and refurbished LINAC systems for sale. More information can be found online at https://www.acceletronics.com/.

Maintenance Programs For Small and Large Scaled Medical Equipment Facilities

Once installed medical equipment, such as linear accelerators, CT scanners, and other large scaled radiation therapy equipment must be properly maintained to ensure accurate results.  Regular maintenance and service improves the longevity of equipment and increases equipment reliability.

More often than not, health care facilities do not have the budget to maintain an in house equipment care team, instead services on equipment is outsourced.  Medical equipment is specialized, and sophisticated, biomedical engineers are responsible for the services performed to ensure they are done properly, in a timely fashion, and by qualified service professionals.

There is a complexity in managing and properly maintaining large scaled medical equipment, such as linear accelerators.  This complexity exists for several reasons including:

  • The specialization of equipment throughout medical facilities
  • The integration of medical equipment and electronic networks
  • The increase in requirements for compliance, safety, reliability, and accuracy
  • The need for outsourcing medical equipment maintenance and repair

It is crucial that these elements are all focused on during the maintenance of facilities medical equipment inventory.  This ensures equipment is maintained at the right time and application.

One way that biomedical engineers keep up with the intricacies of each unique piece of equipment is by using historical data for reference and through overseeing equipment audits.  This allows professionals to analyze their management programs to improve efficiency and compliance all while decreasing costs.

Health care professionals should establish baselines on their equipment.  Each facility is a different size and offers varied levels of technology.  This is why it is inaccurate to use dollars spent as a comparison.  Smaller, more budget conscience facilities may be required to purchase refurbished linear accelerators over brand new to stay within their facility’s financial requirements.

A better measurement to use is a program’s cost of service ratio.  This measurement accounts for technology and the expense of maintenance, the ratio helps determine the financial effectiveness of an equipment maintenance program.  This ratio is found through the division of total annual costs of operations by the initial cost of procuring equipment.  Establish a goal that provides your company direction on reducing costs while increasing overall efficiency.

Medical equipment maintenance programs of the past have been based on an as needed basis for repairs.   Equipment is not maintained and instead breakdowns are addressed as equipment breaks.  Newer methodology involving medical equipment maintenance is time, predictive, and conditioned based to a new risk-based process.    Prevention and corrective maintenance are now concerned with scheduled activities and repairs when equipment is out of service.  This maintenance method prevents the ability to set service intervals based on useful data.

As an independent LINAC service company, Acceletronics is dedicated to delivering the best equipment performance and services for linear accelerators and CT scanners across all major brands and models, as well as new and refurbished LINAC systems for sale.  More information can be found online at https://www.acceletronics.com/.